:. Indique este site a um amigo
Responsável:
:. Novo na área? Leia: Hardware, Redes e Linux para iniciantes


Seções Artigos


HOME
    :.  Artigos
    :.  Tutoriais
    :.  Dicas Linux
    :.  FAQ

Livros
    :.  Entendendo e Dominando o Linux
    :.  Kurumin: Desvendando seus segredos
    :.  Dicionario de termos técnicos

    :.  Notícias
    :.  Overclock
    :.  Análises

Publicações
    :.  cd GDH
    :.  cds Mandrake
    :.  cds do Linux
    :.  E-Books
    :.  Cursos Presenciais

Kurumin Linux
    :.  Manual
    :.  FAQ
    :.  Dicas
    :.  Change-log
    :.  Forum
    :.  Download

Outros
    :.  Fórum
    :.  Humor
    :.  Palm
    :.  Quiz
    :.  Cursos online
        :.  Hardware
        :.  Redes
        :.  Gravação de cds
        :.  Notebooks
        :.  Setup


Pesquisar no site:

Cursos Linux
com Carlos E. Morimoto:

Em Porto Alegre:
Curso Entendendo e Dominando o Linux, 48 horas/aula:

Turma 1 - de 30/08 a 23/09, com aulas de Segunda à Quinta, das 18:30 às 21:30.
Turma 2 - (intensivo): de 27/09 a 09/10, com aulas de Segunda à Sexta, das 14:00 às 18:00 e aos Sábados das 09:00 às 13:00.
Turma 3 - de 09/10 a 13/11, com aulas às terças e quintas, das 19:15 às 22:30 e sábados, das 10:00 às 18:00.

Clique aqui para ver mais informações sobre os cursos


Invista em
conhecimento:
:.cd-ROM Guia do Hardware: Todos os e-books e uma cópia off-line de todo o site por R$ 21,00
:.Linux Mandrake 9.2 GDH, com manual em Português e aplicativos. 4 cds por R$ 26,00
:. E-Books de Carlos E. Morimoto:
- Dicionário Técnico de Informática 3ed.
- Entendendo e Dominando o Linux 6ed.
- Manual de Hardware Completo 3ed.
- Redes 3ed
- Upgrade e Manutenção
- Novas tecnologias 3ed.
Todos os e-books por
R$ 8,00

Download livre, pegue só depois de baixar.

:. cds do Linux:
Kurumin+Kokar R$ 15,00
Debian 3.0 rc02 R$ 40,00
Knoppix3.3 R$ 10,00
Slackware 9.1 R$ 14,00
Red Hat 9 R$ 20,00
DemoLinux R$ 10,00
Peanut R$ 10,00
FreeBSD R$ 20,00
NetBSD R$ 20,00
Libranet R$ 10,00
Definity R$ 10,00
E outras distribuições

 


:. Chegamos ao fim da era dos transístores?

 Por Carlos E. Morimoto
 http://www.guiadohardware.net
 12/06/2001


Ontem, dia 11/06 a Intel anunciou a criação do menor transístor do mundo, medindo apenas 0.02 mícron. A notícia teve uma boa repercussão, principalmente entre a comunidade científica. O tamanho dos transístores está diretamente ligado à velocidade e custo dos circuitos eletrônicos. Quanto menores os transístores, mais rápidos e baratos tornam-se eles.

Mas, deixando de lado o aspecto econômico, o transístor de 0.02 mícron, ou 20 nanômetros, como preferir, é uma grande façanha do ponto de vista da engenharia. Algo que era considerado impossível a alguns meses atrás. Para entender melhor o nível de dificuldade em desenvolver transístores cada vez menores, vale uma rápida explicação de como os transístores funcionam:

O silício não foi escolhido à toda para servir como base para a construção de componentes eletrônicos, ele pode transformar-se num material semicondutor ao ser "contaminado" com algumas substâncias chamadas de impurezas. Após recebe-las, o silício é chamado de silício dopado. Este silício por sua vez, recebe conjuntos de três filamentos metálicos.

Estes três filamentos, um polo positivo, um negativo e um de controle não ficam em contato, pelo contrário estão separados pelo silício, que por sua vez é um material semicondutor. Isso significa que, dependendo da circunstância, ele pode atuar como uma material condutor, ou como um isolante.

O transístor tem dois estados possíveis: ligado e desligado, que representam os bits 1 e 0, base da computação. Quando o polo de controle está desligado, o silício atua como um isolante, impedindo que carga elétrica flua do pólo positivo para o negativo. O circuito está aberto, temos um bit 0. Quando o terceiro pólo aplica uma carga elétrica sobre o silício, ele passa a atuar como um condutor, fechando o circuito entre o pólo positivo e o negativo. Carga elétrica que passa a fluir pode ser usada para controlar o estado de mais transístores, que por sua vez podem abrir ou fechar outros tantos. Alguns milhões de transístores nos lugares certos permitem construir um processador moderno, capaz de processar dezenas de instruções por ciclo. Você pode ler um outra explicação que escrevi sobre isso, com algumas ilustrações inclusive em: http://www.guiadohardware.net/colunas/chips_and_bits/03-Como_sao_fabricados_os_processadores.asp

Voltando ao tema principal, vendo por esse ângulo, o funcionamento dos transístores é bem simples, aliás parece até mesmo fácil construir um processador não é mesmo? De fato a idéia dos transístores é bem simples, a dificuldade está em produzir este conjunto em escala cada vez menor. Acompanhe o tamanho relativo dos transístores com o passar do tempo:

Década de 60: Cerca de 20 mícrons (do tamanho de uma bactéria)

Final da década de 70: 3 mícrons (do tamanho de um vírus)

Final da década de 80, 486: 1 mícron

Final da década de 90, Pentium III Coppermine: 0.18 mícron (do tamanho de uma molécula de DNA)

Por volta de 2012: 0.02 mícron (algumas dezenas de átomos de outro)


Para conseguir estruturas tão pequenas, os fabricantes utilizam a litografia óptica. Basicamente, temos uma fonte de luz, uma máscara e um conjunto de lentes. A máscara contém o desenho que será feito no silício, formando os transistores, mas numa escala macroscópica. As lentes se encarregam de concentrar a luz e projeta-la sobre uma aérea muito pequena do silício, "desenhando" os transístores. Um processador é feito por etapas, usando várias máscaras diferentes.

O problema é que apartir de um certo ponto, ao invés de trabalhar com um cristal de silício, os fabricantes passam a trabalhar com átomos de silício. As propriedades da matéria mudam nesta escala quântica. Alguns milhões de elétrons trafegando por um fio de cobre se comportam de forma diferente que meia dúzia deles pulando de um átomo para o outro. O comportamento passa a ser muito mais imprevisível.

Para ter uma idéia melhor, imagine uma multidão de pessoas correndo e apenas duas pessoas correndo o mesmo percurso. Com uma quantidade grande de pessoas, mesmo que algumas fiquem pelo caminho uma boa parte chegará ao destino. Com apenas duas pessoas, uma pode cair e a outra se perder e ninguém chegar. é mais ou menos por aí :-)

Além de miniaturizar os transístores, é necessários pesquisar novas técnicas e materiais, que mantenham a integridade dos impulsos elétricos, mesmo nesta escala nanoscópica.

A Intel divulgou que pretende conseguir produzir circuitos com os transístores de 0.002 mícron por volta de 2007 e lançar os primeiros produtos no mercado apartir de 2012. Mas o que estes novos processadores trariam de especial? Bem, quanto menores os transístores, mais estruturas é possível adicionar ao processador, fazendo com que ele processe mais instruções por ciclo e ao mesmo tempo possa operar a freqüências mais altas, pois quanto menor um transístor, mais rápida é sua mudança de estado. Que tal um Pentium XXIV com 1 bilhão de transístores, operando a 30 GHz, utilizando voltagem de apenas 0.01 V e ainda por cima mais barato que um Pentium III atual? Ou que tal um chip 50 vezes mais rápido que um Athlon atual, com 512 MB de memória embutida, junto com processadores de vídeo, som, etc. pequeno e econômico o suficiente para ser usado num celular, sem ficar devendo nada aos supercomputadores atuais em termos de desempenho?

Ou que tal interfaces de rede do tamanho de um grão de areia, baratas o suficiente para ser utilizadas em qualquer objeto, até mesmo em embalagens de produtos? Até mesmo a velocidade dos backbones da Internet poderia melhorar, pois os roteadores de pacotes poderiam ficar mais rápidos e inteligentes. Atualmente as fibras ópticas já podem transmitir dados a acima de 1 terabit por segundo, e isso deve aumentar ainda mais nos próximos anos. Mas, sem roteadores capazes de lidar com esse fluxo de dados, não existe muito o que fazer.

Para turbinar mais um pouco os novos chips, a IBM divulgou a alguns dias uma nova técnica de produção de waffers de silício, que permite alinhar os átomos do cristal, fazendo com que o deslocamento dos elétrons seja mais rápido e mais previsível. A IBM pretende colocar os novos waffers no mercado apartir de 2004 ou 2005. Segundo eles, a nova tecnologia permitirá aumentar a freqüência dos processadores em mais 35%.

Aliás, se você está preocupado com a AMD e os demais fabricantes, pode relaxar, apesar da Intel ter sido a primeira a vislumbrar esta tecnologia, não significa que os demais fabricantes não possam alcança-la ou mesmo supera-la com o passar do tempo. A intel também foi a primeira a divulgar que havia produzido transístores de 0.13 mícron, mas as novas fábricas da AMD ficaram prontas na mesma época que as da Intel.

As possibilidades realmente são muitas. Com transístores de 0.02 mícron os fabricantes terão munição para manter a lei de moore por mais uns 20 anos. Depois virá a velha pergunta "e agora"? Pode ser que consigam desenvolver transístores ainda menores, utilizando nanotubos, ou algum outro material que substitua o silício, ainda é muito cedo para falar no fim da era dos transístores. Pode ser também que as pesquisas no ramo dos computadores quânticos avancem a ponto de transforma-los em produtos economicamente viáveis. Afinal, alguns trilhões de dólares fazem milagres.

O progresso econômico que decorrerá disso não vai acabar com os problemas do mundo, mas vai enriquecer muita gente, poluir mais alguns rios e aumentar em mais alguns graus a temperatura do planeta. Espero que até lá desenvolvam alguma tecnologia para limpar a sujeira.




:. Imprima este Texto
:. Faça Download deste texto completo

Encontrou alguma informação incorreta ou algum erro de revisão no texto?
Escreva para mim:



  © 1999 - 2004 :. Todos os direitos reservados :.
Melhor visualizado em qualquer browser. Você escolhe o que usar, não nós :-)
"The box said: Requires MS Windows or better, so I instaled Linux"